
1
[Buddy SDK – User guide-]

[30/08/2021]

BUDDY SDK

User Guide v 2.3.10

2
[Buddy SDK – User guide-]

[30/08/2021]

Date Version Auteur Revision Commentaire

30-08-2021 V1.0.0 Kevin HOANG - -

06-10-2021 V1.1.0 Kevin HOANG

01-01-2022 V2.0 Kevin HOANG SDK v2

15-01-2022 V2.1 Kevin HOANG Tuto

25-01-2022 V2.2 Kevin HOANG Open app

16-02-2022 V2.2b Kevin HOANG Motion detection

23-02-2022 V2.2.1b Kevin HOANG Change Voice

14/03/2022 V2.2.2 Mickael COCQUEMPOT Open camera and

display frame

07/04/2022 V2.3 Kevin HOANG Speech fonctions, and

Tracking

15-04-2022 V2.3.1 Kevin HOANG New dependencies

11-05-2022 V2.3.2 Kevin HOANG SetView as face

29-06-2022 V2.3.3 Ilya SEMISALOV App icon

09-08-2022 V2.3.4 Jacques VALENTIN How to use maven

16-08-2022 V2.3.5 Kevin HOANG UI

07.09.2022 V2.3.6 Ilya SEMISALOV UI

19-09-2022 V2.3.7 Kevin HOANG New install

06-10-2022 V2.3.8 Kevin HOANG Various fixes

17-10-2022 V2.3.9 Kevin HOANG Various fixes

24-10-2022 V2.3.10 Kevin HOANG App parameters

3
[Buddy SDK – User guide-]

[30/08/2021]

1 - TABLE DES MATIERES

BUDDY SDK ...1

1 - TABLE DES MATIERES ...3

1 - PREREQUISITES : ...5

2 - CONNECT TO THE ROBOT ...5

3 - YOUR FIRST APP WITH BUDDY ...7

1) INTRODUCTION ...7

2) CREATE AN EMPTY ANDROID APP ...8

3) IMPORT THE SDK MODULE AND DEPENDENCIES INTO YOUR PROJECT ...9

1. CREATE A LOCAL FILE FOR YOUR MAVEN CREDENTIALS ..9

2. SETUP THE MAVEN DEPENDENCY IN YOUR PROJECT ..9

4) ADD THE BFR PERMISSIONS IN THE MANIFEST .. 11

5) INSERT A “HELLO WORLD” IN THE LAYOUT XML FILE OF YOUR PROJECT .. 12

6) CREATE THE MAIN ACTIVITY OF YOUR APP .. 12

7) CREATE AN APPLICATION CLASS .. 13

8) UPDATE THE MANIFEST ACCORDINGLY .. 14

1. CHECK THE MAINACTIVITY NAME ... 14

2. REFER TO THE BUDDYAPPLICATION .. 14

3. CHOOSE A THEME .. 15

9) BUILD AND RUN THE APP .. 15

4 - IMPORTANT NOTE ON THE LOCKTASK MODE .. 16

5 - OPEN AN APP FROM THE BUDDYCORE MENU ... 17

6 - GUIDELINES FOR A BUDDY APPLICATION ... 19

7 - SDK API DOCUMENTATION .. 20

1. ACTUATORS .. 20

• HEAD... 20

• WHEELS .. 24

• LEDS .. 26

2. SENSORS ... 30

• TOUCH SENSORS.. 30

• INERTIAL (IMU) SENSORS .. 33

• MISC INFO ... 36

3. FACE.. 37

4. VOCAL INTERACTION .. 41

• SPEECH (TEXT-TO-SPEECH TTS) .. 42

4
[Buddy SDK – User guide-]

[30/08/2021]

• LISTENING (SPEECH-TO-TEXT STT) .. 44

5. VISION .. 49

6. BEHAVIOUR INSTRUCTIONS (BI) ... 56

BEHAVIOURINTERPRETER .. 56

ONRUNINSTRUCTIONLISTENER... 58

ONBEHAVIOURALGORITHMLISTENER .. 58

EXAMPLE TO READ A BI:... 59

7. USER INTERFACE (UI) ... 60

8. COMPANION .. 62

8 - TUTORIALS ... 63

1) MAKE THE ROBOT MOVE (WHEELS) ... 63

• LAYOUT XML FILE: .. 63

• MAINACTIVITY FILE: .. 65

2) RUNNING THE APP .. 68

2) MAKE THE ROBOT MOVE (HEAD) .. 69

• LAYOUT XML FILE : ... 69

• MAINACTIVITY FILE :.. 70

2) RUNNING THE APP .. 73

APPENDIX : ... 75

1 - VOCON GRAMMARS CONTENT .. 75

2 - BNF COMPILATION ... 75

3 - APP ICON .. 76

5
[Buddy SDK – User guide-]

[30/08/2021]

1 - PREREQUISITES :

▪ Basic knowledge on how to program an Android App

▪ Android studio > 4.2

▪ Android SDK >=28

▪ Graddle plugin >=7.0

▪ The latest BuddyCore version installed and running on your robot

▪ ADB installed on your computer

https://developer.android.com/studio/command-line/adb

2 - CONNECT TO THE ROBOT

The only way to connect to the Robot is over ethernet. To do so you could use a USB-Ethernet

adapter or connect over the Wifi network with adb.

 Highly recommended : adb is also provided with Screencopy, a useful tool to monitor/control

your device from your computer. Go to https://github.com/Genymobile/scrcpy, and install it following

the instructions in the “Get the app “ section.

On Windows, to connect to the robot with adb:

1. Be sure to be on the same wifi network, your PC and Buddy

2. Get the Buddy's IP adress :

➢ On the robot, access the BuddyCore menu by touching the top-left corner of the screen:

➢ Click on the Connection icon and get the IP address of your robot in the Wifi section

https://developer.android.com/studio/command-line/adb
https://github.com/Genymobile/scrcpy

6
[Buddy SDK – User guide-]

[30/08/2021]

2bis. Check if you can at least ping it

On Windows:

3. Go to a folder containing “adb.exe”

4. Open a command invite by clicking on the file bar. Then, type cmd and press ENTER

5. A command invite should appear like this :

6. In This command window, write : “ adb connect <robot’s Ip Adress>:5555 “

And press ENTER (The Ip Adress is starting like the following form : 192.168.etc...)

When connected, you should see the message “connected to <IP_Adress> showing up.

7
[Buddy SDK – User guide-]

[30/08/2021]

3 - YOUR FIRST APP WITH BUDDY

1) Introduction

Your application runs in the Buddy environment, represented by the BuddyCore app.

For your app to work properly, BuddyCore must always be launched in the background, so that your

app will appear on top of it. That’s why, BuddyCore should be the default Launcher on your device.

 An important aspect is that the BuddyCore app includes the Face of Buddy. So in fact, if you want to

display your robot’s face, your app has to be transparent!

In addition, the below instructions and the provided code templates transfer the touch actions on your

app to Buddycore, so you can basically interact with Buddy’s face when pressing on the touchscreen.

The same way, when you display the menu and UI of BuddyCore, they will appear on top of your app.

For instance, the default close button and application icon are automatically managed

by BuddyCore and the SDK, so you don’t have to do it yourself.

BuddyCore = Buddy’s Face

Your app

UI éléments from

BuddyCore

8
[Buddy SDK – User guide-]

[30/08/2021]

The following explains how to use the BFR SDK within Android Studio from scratch. If you already have

an Android project, you can skip directly to the section “Import the SDK module in your project”.

For those already familiar with the early versions of the SDK, a changelog can be found here.

Also, a ready-to-use code template is also provided with the examples.

2) Create an empty Android App

1. In Android studio go to File -> New -> New Project…

2. Select Empty Activity (by default) but you can change as your conveniance.

3. Name it accordingly , select The API 28 : Android 9.0 as minimum SDK, and click on

Finish

https://www.buddytherobot.com/Uploads/SDK/changelog_2.2.txt
https://github.com/BlueFrogRobotics/BlueFrog_SDK_examples

9
[Buddy SDK – User guide-]

[30/08/2021]

3) Import the SDK module and dependencies into your

project

1. Create a local file for your Maven credentials

➢ In order to store your username/password for the Maven repository, create a file at the

root of your project, and name it “credentials.gradle”:

➢ In the credentials.gradle file, add the following lines:
ext{

 maven_user="<YOUR_USERNAME>"

 maven_password="<YOUR_PASSWORD>"

}

➔ Replace <YOUR_USERNAME> and <YOUR_PASSWORD> by the username and password

that Bluefrog provided to you during your subscription to the SDK.

 : If you use git within your project, be careful not to commit the credentials.gradle containing

you personal user/password on a public repository!!!

2. Setup the Maven dependency in your project

Step 1: Setup maven repository in your project build.gradle

• Go to the project build.gradle file

• In the buildscript section, add the following lines :

def gradlecredentials = "credentials.gradle"

if (project.file(gradlecredentials).exists()){

 apply from: gradlecredentials

}

• In the allprojects/repositories section, add the following lines for the Maven repository :

10
[Buddy SDK – User guide-]

[30/08/2021]

maven {
url "https://bluefrogrobotics.jfrog.io/artifactory/bluefrogrobotics-libs-release-local/"

 credentials{

 username "${maven_user}"

 password "${maven_password}"

 }

}

The graddle file should look like this:

11
[Buddy SDK – User guide-]

[30/08/2021]

Step 2: add the SDK dependencies in the app build.gradle

• go to the app build.gradle file

• in the dependencies section add the following lines:
dependencies {

 implementation 'androidx.appcompat:appcompat:1.3.1'

 // Other dependencies here

 // Bluefrog SDK

 implementation 'com.bluefrogrobotics.buddy:BuddySDK:2+'

}

 : 'com.bluefrogrobotics.buddy:BuddySDK:2+ means that you import the last version

of the Bluefrog SDK for Buddy available. If you need a specific version, you will have to

replace 2+ by the exact version number followed by a “+” .

For instance 'com.bluefrogrobotics.buddy:BuddySDK:2.2.0+’ , for the SDK v2.2.0.

4) Add the BFR permissions in the Manifest

To use the Buddy ressources (Actuators, Motors, Speech, …), you first need to ask the relevant

permissions by adding them in the manifest.

For the purpose of this hellow_world example, you don’t actually need to add any permission

as the app described below doesn’t use any resource (other than the screen).

However, for your future developments, you are required to insert one or several of the

following lines in the manifest, depending on what your app is supposed to do.

• To access the TTS

<uses-permission android:name="com.bfr.buddy.resource.SPEECH" />

• To access the STT

<uses-permission android:name="com.bfr.buddy.resource.LISTEN" />

• To use the wheels

<uses-permission android:name="com.bfr.buddy.resource.WHEELS" />

• To use the head movements

<uses-permission android:name="com.bfr.buddy.resource.HEAD" />

• To use the LEDs

<uses-permission android:name="com.bfr.buddy.resource.LEDS" />

12
[Buddy SDK – User guide-]

[30/08/2021]

• To access the sensors

<uses-permission android:name="com.bfr.buddy.resource.SENSOR_MODULE" />

• To change the facial expression

<uses-permission android:name="com.bfr.buddy.resource.FACE" />

• To use the GUI (made by BFR)

<uses-permission android:name="com.bfr.buddy.resource.GUI" />

5) Insert a “Hello World” in the layout xml file of your project

Insert a Hello button in the layout, and call it buttonHello.

6) Create the main Activity of your app

1. Your MainActivity has to inherit from BuddyActivity.

 First, you need to import BuddyActivity

import com.bfr.buddysdk.BuddyActivity;

Secondly, you need to extend your MainActivity class with BuddyActivity (instead of the default

AppCompatActivity)

public class MainActivity extends BuddyActivity

 Tips:

If you do not want to copy/paste. You can follow the following steps.

Place your mouse on BuddyActivity

13
[Buddy SDK – User guide-]

[30/08/2021]

Import class

Your class has been added

2. Inside the MainActivity, two additional functions are needed

➢ Add onSDKReady()

public void onSDKReady() { }

This callback is called when the BFR SDK is initialized and ready to use.

: As it takes some time for the SDK to initialize, we highly recommend not to make any call to the

BFR SDK before onSDKReady is actually called.

3. Send the touch informations to the background (BuddyCore)
// in onSDKReady

BuddySDK.UI.setViewAsFace(findViewById(R.id.view_face));

4. Set an onClick listener for the button to make Buddy speak
// set the button click listener

findViewById(R.id.buttonHello).setOnClickListener(

view -> BuddySDK.Speech.startSpeaking("Hello"));

7) Create an application class

1. In the same folder as your MainActivity, create a new class.

2. Call it “MainApplication”, for instance

14
[Buddy SDK – User guide-]

[30/08/2021]

3. The MainApplication class must extends BuddyApplication
import com.bfr.buddysdk.BuddyApplication;

public class MainApplication extends BuddyApplication {}

4. Check / add if non existent the onCreate callback:
public class MainApplication extends BuddyApplication {

 @Override

 public void onCreate() {

 super.onCreate();

 } //end onCreate

} // end class

8) Update the Manifest accordingly

1. Check the MainActivity name

Obviously, the name of the activity in the manifest must match the name of the Main Activity you

created in 2-5.

<activity

 android:name=".MainActivity"

2. Refer to the BuddyApplication

Add an android:name tag, and fill in the name of the application you created in 2-6.

<application

 android:name="com.bfr.helloworld.MainApplication"

15
[Buddy SDK – User guide-]

[30/08/2021]

3. Choose a Theme

We recommend to use the BuddyTheme provided with the SDK. This theme is for a transparent app

as described in “Your first App with Buddy”.

<application

 (…)

 android:theme="@style/BuddyTheme">

1. At the end, your manifest should look like this:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 package="com.example.myapplication">

 <application

 android:name="com.example.myapplication.MainApplication"

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.MyApplication"

 tools:targetApi="31">

 <activity

 android:name=".MainActivity"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

9) Build and run the app

Your app (a single button in our example) should appear on the screen of the robot:

16
[Buddy SDK – User guide-]

[30/08/2021]

4 - IMPORTANT NOTE ON THE LOCKTASK MODE

By default, your Buddy might be in Locktask, which means:

- Access to the Android default launcher is prohibited

- Only the whitelisted apps can run on you robot

(for more detailed informations on the subject please refer to the official Android Locktask

documentation)

Now, as a developer, you might want to disable the locktask mode for more flexibility in your workflow.

To do so, you can disable the LockTask mode in the dev menu from BuddyCore

If the dev menu is not accessible, you will have to enable it with the following procedure:

- Go to the information menu in BuddyCore

- Press 10x on the BuddyOS version number

- When asked for a pin code, enter the 6 last digits of your robot IMEI and validate

➔ The dev mode should now be active

When in production, we highly recommend to enable the Locktask mode and disable the dev mode.

As a consequence, your app will have to be whitelisted if you decide to Locktask your robot.

➔ Please refer to the next chapter to include your app in the whitelist of authorized apps

https://developer.android.com/work/dpc/dedicated-devices/lock-task-mode

17
[Buddy SDK – User guide-]

[30/08/2021]

5 - OPEN AN APP FROM THE BUDDYCORE MENU

This section explains how to add your app (or any app) to the BuddyCore My Applications menu.

This has two main effects:

• You will be able to lauch your app from the menu (obviously)

• The app will be in the whitelist if you want to put your Buddy in Locktask

(see previous chapter)

PRE-REQUISITE: You must know the PACKAGE name of the app you want to add to the menu. It should

look like “com.example.myapp”

The list of apps in the menu are stored in the applications.json file located in

/sdcard/Configs/Users/Default/applications.json

Technically, you could edit the file directly on the robot and reboot.

However, we suggest the following method:

1) Download the file on your computer (with a USB stick or the

‘adb pull /sdcard/Configs/Users/Default/applications.json <some_folder_in_your_computer> ‘

command)

2) Manually add the name of the package you want to open at the end of the file like so:

 {

 "Autostart": false,

 "Package": "com.android.myapplication",

 "ShowInMenu": true

 }

Where :

18
[Buddy SDK – User guide-]

[30/08/2021]

• Autostart : the app starts automatically with Buddycore

• Package : name of the package of the app

• ShowInMenu : visible or not in the menu

•

3) Save the applications.json file back on the device and replace the existing one (with a USB

stick or the ‘adb push applications.json /sdcard/Configs/Users/Default/applications.json ‘

command

4) Reboot the robot

The app you added should appear in the menu. Press on the icon to open it.

19
[Buddy SDK – User guide-]

[30/08/2021]

6 - GUIDELINES FOR A BUDDY APPLICATION

For your app to be integrated in the Buddy general ecosystem (above all the embedded BFR Com-

panion mode), you are required to follow the follow guidelines.

➢ Buddy’s Companion mode:

By default, Buddy shall have an autonomous mode called “Companion”. You don’t have to

do anything really to enable it. You just have to know that your app might run in parallel

with other processes.

- Your app must stop its processes when on Pause (onPause of the activity has been called)

- Your app must resume from where it has been on pause (onResume of the activity has been

called).

- Your activities must extend BuddyActivity and BuddyCompatActivity instead of Activity and

AppCompatActivity

- Do not call any SDK-related function before the onSDKReady() callback has been called.

- The app doesn’t need to include a specific button to close as it is already embedded with the

SDK

- Because the close and menu button are defined by default, you will have to be careful not to

put any sensitive part of UI at this same location in your app.

- You should only request the relevant BFR permissions in the manifest, and leave out the oth-

ers if you don’t use their respective resource.

- For the Graphics guidelines, please refer to the Guideline-Application-UI-2022.pdf document

- Within Android Studio, we recommended to create a custom device when working with layouts.

It must be a “phone” of size 1280x800 with only horizontal orientation.

20
[Buddy SDK – User guide-]

[30/08/2021]

7 - SDK API DOCUMENTATION

1. ACTUATORS

Very often sending a command to the actuators send a return signal via a callback.

 : You should wait for the « OK/NOK »signal return before sending another command to the

actuators

• HEAD

void USB.enableNoMove(State, RspCallback)

Purpose: Enable the “No” motor

Params:

• State (int): 1 to enable, 0 to disable

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

string USB.Actuators.getNoStatus()

Purpose: Get the No motor status

Return:

• DISABLE: No motor is disabled

• STOP: No motor is enabled

• SET: No motor is moving

• NONE: Default

void USB.enableYesMove(State, RspCallback)

Purpose: Enable the “Yes” motor

Params:

• State (int) : 1 to enable, 0 to disable

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

21
[Buddy SDK – User guide-]

[30/08/2021]

string USB.Actuators.getYesStatus()

Purpose: Get the “Yes” motor status

Return:

• DISABLE: Yes motor is disabled

• STOP: Yes motor is enabled

• SET: Yes motor is moving

• NONE: Default

WARNING:

You have to ENABLE THE MOTORS before using the following functions

--

void USB.buddySayNo (Speed, Angle, RspCallback)
Purpose: Make the head move around the “No” axis

Params:

• Speed (float): desired speed in °/s between -140 and 140.

>0: robot is looking right, <0: robot is looking left

• Angle (float) : target angle in ° between -90 and 90°

• RspCallback (IUsbCommadRsp) : return

o “OK” when succeed to launch

o “NOK” when fail

o “NO_MOVE_FINISHED” when the function finished to be executed

void USB.buddySayYes (Speed, Angle, RspCallback)
Purpose: Make the head move around the “Yes” axis

Params:

• Speed (float): desired speed in °/s between -49.2 and 49.2.

>0: robot is looking up, <0: robot is looking down

Angle (float): target angle in ° between -35 and 45

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed to launch

o “NOK” when fail

o “YES_MOVE_FINISHED” when the function finished to be executed

void USB.buddySayYesStraight(Speed, RspCallback)
Purpose: Make the head move around the “Yes” axis continuously until stop

instruction or the physical limit
Params:

22
[Buddy SDK – User guide-]

[30/08/2021]

• Speed (float): desired speed in °/s between -49.2 and 49.2

>0: robot is looking up, <0: robot is looking down

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed to launch

o “NOK” when fail

void USB.buddySayNoStraight(Speed, RspCallback)
Purpose: Make the head move around the “No” axis continuously until stop

instruction or the physical limit

Params:

• Speed (float): desired speed in °/s between -140 and 140.

>0: robot is looking right, <0: robot is looking left

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed to launch

o “NOK” when fail

void USB.buddyStopNoMove (RspCallback)

Purpose: Stop “No” motor

Params:

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed

o “NOK” when fail

o

void USB.buddyStopYesMove (RspCallback)
Purpose: Stop “Yes” motor

Params:

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed

o “NOK” when fail

int USB. Actuators.getYesPosition()
Purpose: Get the orientation of the head around the Yes axis

Return:
• Position of the Yes motor in °

23
[Buddy SDK – User guide-]

[30/08/2021]

int USB. Actuators.getNoPosition()

Purpose: Get the orientation of the head around the No axis

Return:

• Position of the No motor in °

24
[Buddy SDK – User guide-]

[30/08/2021]

• Wheels

void USB.enableWheels(Left, Right, RspCallback)

Purpose: Enable the Buddy’s motors

Params:

• Left (int): enable left wheel (0: Off, 1: On)

• Right (int): enable right wheel (0: Off, 1: On)

• RspCallback (IUsbCommadRsp): return

o “OK” when launch

o "NOK” when fail

--

WARNING:

You have to ENABLE WHEELS before using the following functions.

--

void USB.rotateBuddy(Speed, Angle, RspCallback)

Purpose: rotate the robot at a given angle and speed

Params:

• Speed (float): give the speed of the rotation of the robot in deg/s around its vertical axis,

between -100°/s and 100°/s (min. absolute speed : 30°/s)

>0: counter-clockwise, <0: clockwise

• Angle[optional] (float): give the angle of the rotation of the wheel in degree,

o between –360° and 360°

• If absent, Buddy will rotate indefinitely at the given speed

• RspCallback (IUsbCommadRsp): return

o “OK” when started

o “WHEEL_MOVE_FINISHED” when the move is finished

o "NOK” when fail

void USB.emergencyStopMotors(RspCallback)

Purpose: Stop the motors immediately with highest possible deceleration

Params:

• RspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

https://frc-word-edit.officeapps.live.com/com/bfr/usbservice/BdusbServer.UsbImpl.html#enableWheels-int-int-com.bfr.usbservice.IUsbCommadRsp-
https://frc-word-edit.officeapps.live.com/com/bfr/usbservice/BdusbServer.UsbImpl.html#rotateBuddy-float-float-com.bfr.usbservice.IUsbCommadRsp-
https://frc-word-edit.officeapps.live.com/com/bfr/usbservice/BdusbServer.UsbImpl.html#emergencyStopMotors-com.bfr.usbservice.IUsbCommadRsp-

25
[Buddy SDK – User guide-]

[30/08/2021]

void USB.moveBuddy(Speed, Distance, RspCallback)

Purpose: Move the robot straight at a defined speed and distance

Params:

Speed (float): give the speed of the robot in m/s, (+): Forward, (-): Backward, between

0.05m/s to 0.7m/s

Distance[optional] (float): give the distance to reach in meter

If absent, Buddy will move indefinitely at the given speed

RspCallback (IUsbCommadRsp): return

o “OK” when launch

o “WHEEL_MOVE_FINISHED” when the move is finished

o "NOK” when fail

void USB.emergencyStopMotors(RspCallback)

Purpose: Stop the motors immediately with highest deceleration as possible

Params:

RspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

https://frc-word-edit.officeapps.live.com/com/bfr/usbservice/BdusbServer.UsbImpl.html#moveBuddy-float-float-com.bfr.usbservice.IUsbCommadRsp-
https://frc-word-edit.officeapps.live.com/com/bfr/usbservice/BdusbServer.UsbImpl.html#emergencyStopMotors-com.bfr.usbservice.IUsbCommadRsp-

26
[Buddy SDK – User guide-]

[30/08/2021]

• LEDs

void USB.blinkLed(iLedId, iColor, iPeriod, iRspCallback)
Purpose: make a specific led of Buddy blink with a given color and at a given period

Params:

• iLedId (int) :

o 0 : Right shoulder

o 1 : Left shoulder

o 2 : Heart

• iColor (string): HTML color (in hexadecimal)

• iPeriod (int) : period of the blinking in ms (max 5000ms)

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.updateAllLed(iColor, iRspCallback)
Purpose: set the color of all the leds

Params:

• IColor (string) : HTML color (in hexadecimal)

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.fadeAllLed(iColor, iPeriod, iRspCallback)
Purpose: Switch on gradually all leds periodically with the color and period we choose

Params:

• iColor (string) : HTML color (in hexadecimal)

• iPeriod (int) : period of the blinking in ms (max 5000ms)

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.updateLedColor(iLedId, iColor, iRspCallback)
Purpose: set the color of a specific led of Buddy

Params:

• iLedId (int) :

o 0 : Right shoulder

o 1 : Left shoulder

27
[Buddy SDK – User guide-]

[30/08/2021]

o 2 : Heart

• iColor (string) : HTML color (in hexadecimal)

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.updateAllLedWithPattern(iColor, iPattern, iPeriod, iStep,

iRspCallback)
Purpose: Switch all Leds with a pattern with the color we choose.

Params:

• iColor (string): HTML color (in hexadecimal)

• iStep (int): number of steps between the OFF and ON value of the LED

• iPeriod (int): time interval between each step, in ms (MUST BE >100ms)

• iPattern (int) : There are 4 patterns coded on 2 bits (see below)

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

Pattern 1:

The LEDs intensity will increase and decrease following ramps pattern. For a smooth curve, choose a high number

of steps.

Pattern 2 :

Same as before but beginning with the LED ON.

0

2

4

6

Pattern 1
step num.= 5

0

1

2

3

4

5

6

Pattern 2
step num.= 5

iPeriod

iPeriod

28
[Buddy SDK – User guide-]

[30/08/2021]

Pattern 3 :

The LEDs intensity will decrease following a ramp pattern. For a smooth curve, choose a high number of steps.

Pattern 4 :

The LEDs intensity will increase following a ramp pattern. For a smooth curve, choose a high number of steps.

0

1

2

3

4

5

6

Pattern 3
step num.= 5

iPeriod

0

1

2

3

4

5

6

Pattern 4
step num.= 5

iPeriod

29
[Buddy SDK – User guide-]

[30/08/2021]

void USB.blinkAllLed(iColor, iPeriod, iRspCallback)
Purpose: make all the leds blink with a specific color at a given period

Params:

• IColor (string): HTML color (in hexadecimal)

• IPeriod (int) : period of the blinking in ms (max 5000ms)

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.stopAllLed(iRspCallback)
Purpose: Switch off all the Leds

Params:

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.stopRightShoulderLed(iRspCallback)
Purpose: Switch off right shoulder LEDs

Params:

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.stopLeftShoulderLed(iRspCallback)
 Purpose: Switch off left shoulder LEDs

Params:

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

void USB.stopHeartLed(iRspCallback)
Purpose: Switch off the heart LEDs

Params:

• iRspCallback (IUsbCommadRsp): return

o “OK” when succeed

o "NOK” when fail

30
[Buddy SDK – User guide-]

[30/08/2021]

2. Sensors

• Touch sensors

Buddy has three sensors in the head which can be used to detect a tactile touch. They are

located on the top-rear of the head, behind the microphone array, on the right and on the

the left.

4. HEAD SENSORS

boolean Sensors.HeadTouchSensors().[Top(), Left(),Right()].isTouched()
Purpose: Check if the top/left/right of the head is touched

Return:
• (boolean) true if touched, false if not

For instance:

BuddySDK.Sensors.HeadTouchSensors().Top().isTouched();
BuddySDK.Sensors.HeadTouchSensors().Left().isTouched();
BuddySDK.Sensors.HeadTouchSensors().Right().isTouched();

5. BODY SENSORS

Buddy has three sensors in the body which can be used to detect a tactile touch. They are

located in its torso just above the Bluefrog logo, in its right shoulder and in its left shoulder

just above circle of leds.

boolean Sensors.BodyTouchSensor().[Torso(), LeftShoulder(),

RightShoulder()] .isTouched()
Purpose: Check if the chest/left shoulder/right shoulder is touched

Return:
• (boolean) true if touched, false if not

For instance:

BuddySDK.Sensors.BodyTouchSensors().Torso().isTouched();
BuddySDK.Sensors.BodyTouchSensors().LeftShoulder().isTouched();
BuddySDK.Sensors.BodyTouchSensors().RightShoulder().isTouched();

31
[Buddy SDK – User guide-]

[30/08/2021]

Proximity sensors

Buddy has 6 proximity sensors which allow to detect object (or obstacles):

- 1 infra-red Time-of-Flight (ToF) sensor in the back

- 2 ultra-sound (US) sensors in the front, pointing to the left and right of the robot
- 3 ToF sensors in the front: one is in the middle, another one aiming at the Left, the last one

aiming at the Right.

: The right ToF sensor actually aims at the left side of Buddy , and the left ToF

sensor at the right side of Buddy

The US sensors can give the distance to the first object they see. They return a value in mm

between a theoretic range of [0;800mm]

The ToF sensors can give the distance to the first object they see. They return a value in mm

between a theoretic range of [0;1300mm]

If there is no object in front of the sensor, it returns 0.

--

WARNING:

You have to ENABLE SENSORS before using one of the proximity sensors

--

void USB.enableSensorsModule(Enable, RspCallback)
Purpose: Enable all sensors

Params:

Enable (boolean): true: enable, false: disable

RspCallback (IUsbCommadRsp): return

o “success” when succeed

o "failed” when fail

Left ToF (looking right)

Left US

Right US

Front ToF

Right ToF (looking left)

32
[Buddy SDK – User guide-]

[30/08/2021]

6. Ultrasound (US) sensors

int Sensors.USSensors().[RightUS(), LeftUS()].getDistance()
Purpose: Get the right/left US data

Return:
• (int) Right US data in mm (returns -1 if the sensor is disabled) between [0;800mm]

For instance:

BuddySDK.Sensors.USSensors().LeftUS().getDistance();
BuddySDK.Sensors.USSensors().LeftUS().getDistance();

int Sensors.USSensors().[RightUS(), LeftUS()].getAmplitude()
Purpose: Get the right/left US data amplitude. The amplitude is proportional to the

size of the object the sensor detects.

Return:
• (int) Right US data amplitude in mm (returns 65535 if the sensor is disabled)

For instance:

BuddySDK.Sensors.USSensors().LeftUS().getAmplitude();
BuddySDK.Sensors.USSensors().LeftUS().getAmplitude();

7. Infra-red Time-of-Flight (ToF) sensors

int Sensors.TofSensors().[FrontMiddle(),FrontLeft(), FrontRight(),

Back()].getDistance()
Purpose: Get the distance of the object in front of the respective ToF sensor

Return:
• (int) distance of the object in mm (returns 65535 if the sensor is disabled) between [0;1300mm]

For instance:

BuddySDK.Sensors.TofSensors().FrontMiddle().getDistance();
BuddySDK.Sensors.TofSensors().FrontLeft().getDistance();
BuddySDK.Sensors.TofSensors().FrontRight().getDistance();
BuddySDK.Sensors.TofSensors().Back().getDistance();

33
[Buddy SDK – User guide-]

[30/08/2021]

boolean Sensors.TofSensors().[FrontMiddle(),FrontLeft(), FrontRight(),

Back()].getError()
Purpose: Get the error of the Tof

Return:
• (boolean) error of the Tof

• Inertial (IMU) sensors

There are two IMU sensors that gives the linear accelerations and the angular velocity of the robot

They are situated in the body and in the head of the robot.

8. Body IMU

int Sensors.BodyIMU().getAccX()
Purpose: Get the acceleration of the body IMU on the X axis

Return:
• (int) value of the X-axis acceleration in mg (0.001 g-force)

int Sensors.BodyIMU().getAccY()
Purpose: Get the acceleration of the body IMU on the Y axis

Return:
• (int) value of the Y-axis acceleration in mg (0.001 g-force)

int Sensors.BodyIMU().getAccZ()
Purpose: Get the acceleration of the body IMU on the Z axis

Return:
• (int) value of the Z-axis acceleration in mg (0.001 g-force)

int Sensors.BodyIMU().getGyrX()
Purpose: Get the angular velocity of the body IMU on the X axis

Return:
• (int) value of the X-axis angular velocity in ddeg/s (0.1degree/second)

int Sensors.BodyIMU().getGyrY()
Purpose: Get the angular velocity of the body IMU on the Y axis

Return:
• (int) value of the Y-axis angular velocity in ddeg/s (0.1degree/second)

int Sensors.BodyIMU().getGyrZ()
Purpose: Get the angular velocity of the body IMU on the Z axis

Return:

34
[Buddy SDK – User guide-]

[30/08/2021]

• (int) value of the Z-axis angular velocity in ddeg/s (0.1degree/second)

35
[Buddy SDK – User guide-]

[30/08/2021]

➢ Head IMU

int Sensors.HeadIMU().getAccX()
Purpose: Get the acceleration of the head IMU on the X axis

Return:
• (int) value of the X-axis acceleration in mg (0.001 g-force)

int Sensors.HeadIMU().getAccY()
Purpose: Get the acceleration of the head IMU on the Y axis

Return:
• (int) value of the Y-axis acceleration in mg (0.001 g-force)

int Sensors.HeadIMU().getAccZ()
Purpose: Get the acceleration of the head IMU on the Z axis

Return:
• (int) value of the Z-axis acceleration in mg (0.001 g-force)

int Sensors.HeadIMU().getGyrX()
Purpose: Get the angular velocity of the head IMU on the X axis

Return:
• (int) value of the X-axis angular velocity in ddeg/s (0.1degree/second)

int Sensors.HeadIMU().getGyrY()
Purpose: Get the angular velocity of the head IMU on the Y axis

Return:
• (int) value of the Y-axis angular velocity in ddeg/s (0.1degree/second)

int Sensors.HeadIMU().getGyrZ()
Purpose: Get the angular velocity of the head IMU on the Z axis

Return:
• (int) value of the Z-axis angular velocity in ddeg/s (0.1degree/second)

36
[Buddy SDK – User guide-]

[30/08/2021]

• Misc info

➢ Microphone

float Sensors.Microphone().getAmbiantSound()
Purpose: Get the volume in decibel

Return:
• (float) the volume in decibel

float Sensors.Microphone().getSoundLocalisation()
Purpose: Get the angle in degree of the sound location between 0° and 360°

Return:
• (float) the angle of the sound location in °

float Sensors.Microphone().getTriggerScore()
Purpose: Get the score which rates the pronounciation of the trigger sentence: “OK

Buddy”

Return:
• (float) the score of the trigger sentence

➢ Battery

int Sensors.Battery().getBatteryLevel()
Purpose: Get the battery level

Return:
• (int) the battery level

boolean Sensors.Battery().isCharging()

Purpose: Check if the battery is in charge

Return:
• (boolean) true: charging, false: not in charge

37
[Buddy SDK – User guide-]

[30/08/2021]

3. FACE

 : setMood() uses the face and the LEDs, so it needs two permissions to work :

"com.bfr.buddy.resource.FACE" and “com.bfr.buddy.resource.LEDS”

void UI.setMood(iExpression, iSpeed, IUIFaceAnimationCallback iCallback)

Purpose: Give Buddy different facial expressions and set the LEDs

Params:

• iExpression (FacialExpression):

o NONE

o NEUTRAL

o GRUMPY

o HAPPY

o ANGRY

o LISTENING

o LOVE

o SAD

o SCARED

o SICK

o SURPRISED

o THINKING

o TIRED

• iSpeed[optional] (double): Can take value from 0.0 to 1.0 (0% to 100%). The faster the

speed is, the faster the facial expression is.

• iCallback[optional] : Called at the end of the instruction in case of success/failure

: The setFacialExpression() method only controls Buddy’s face appearance. Therefore we

recommend to use the setMood() method, which also set the LED colors accordingly.

void UI.setFacialExpression(iExpression, iSpeed ,

IUIFaceAnimationCallback iCallback)
Purpose: Give to Buddy different facial expressions

Params:

• iExpression (FacialExpression):

o NONE

o NEUTRAL

o GRUMPY

o HAPPY

o ANGRY

o LISTENING

38
[Buddy SDK – User guide-]

[30/08/2021]

o LOVE

o SAD

o SCARED

o SICK

o SURPRISED

o THINKING

o TIRED

• iSpeed[optional] (double): Can take value from 0.0 to 1.0 (0% to 100%). The faster the

speed is, the faster the facial expression is.

• iCallback[optional] : Called at the end of the instruction in case of success/failure

void UI.playFacialEvent(iEvent, iSpeed, IUIFaceAnimationCallback

iCallback)
Purpose: Play different gimmicks

Params:

• iEvent (FacialEvent):

o DOUBTFUL

o AWAKE

o BLINK_EYES

o BLINK_LEFT_EYE

o BLINK_RIGHT_EYE

o CLOSE_EYES

o CLOSE_LEFT_EYE

o CLOSE_RIGHT_EYE

o FALL ASLEEP

o GROWLING

o OPEN_EYES

o OPEN_LEFT_EYE

o OPEN_RIGHT_EYE

o SMILE

o SURPRISED

o SUSPICIOUS

o TEASE

o WHAT

o WHISTLE

o YAWN

• Speed[optional] (double): Can take value from 0.0 to 1.0 (0% to 100%). The faster the

speed is, the faster the facial expression is.

• iCallback[optional] : Called at the end of the instruction in case of success/failure

➢ Energy/Positivity and facial expressions

39
[Buddy SDK – User guide-]

[30/08/2021]

When Buddy has a NEUTRAL face, you can fine-tune its facial expression using the Energy/positivity

parameters. You will find below a mapping of the possible emotions based on a model from James

Russell1

void UI.setFacePositivity(iPositivity)
Purpose: Change positivity level of the face

Params:

• iPositivity (float): Can take value from 0.0 to 1.0 (0% to 100%).

void UI.setFaceEnergy(iEnergy)
Purpose: Change energy level of the face

Params:

• iEnergy (float): Can take value 0.0 to 1.0 (0% to 100%).

void UI.setLabialExpression(iExpression)
Purpose: Change the expression of Buddy’s mouth

Params:

• iExpression (LabialExpression):

o SPEAK_ANGRY

o NO FACE

o SPEAK HAPPY

o SPEAK NEUTRAL

1 The circumplex model of affect : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367156/

40
[Buddy SDK – User guide-]

[30/08/2021]

void UI.playFacialRelativeEvent(iSpeed)
Purpose: Play face animation relative to the current expression

Params:

• ISpeed (double): Can take value 0.0 to 1.0 (0% to 100%). The faster the speed is, the

faster the gimmick is.

void UI.lookAtXY(iX, iY, iSmooth)
Purpose: Make eyes look at a direction

Params:

• iX (float): Horizontal axis. When we go to right, the value of x increases.

• iY (float): Vertical axis : When we go down, the value of y increases.

• ISmooth (boolean): If true the animation will be smooth, otherwise the eyes will instantly

move to the direction

void UI.lookAt(iPosition, iSmooth)
Purpose: Make eyes look at a direction

Params:

• iPosition (GazePosition):

o CENTER

o TOP

o LEFT

o RIGHT

o BOTTOM

o TOP_LEFT

o TOP_RIGHT

o BOTTOM_RIGHT

41
[Buddy SDK – User guide-]

[30/08/2021]

o BOTTOM_LEFT

• iSmooth (boolean): If true the animation will be smooth, otherwise the eyes will instantly

move to the direction

void addFaceTouchListener(IUIFaceTouchCallback iCallback)
• Brief : Bind callback to Buddy’s face touch event

• Param :

o IUIFaceTouchCallback iCallback : callback called when face is touched (see IUIFace-

TouchCallback)

: The Left and Right eyes are actually from Buddy’s side (not the way you look at it)

void removeFaceTouchListener(IUIFaceTouchCallback

iCallback)
• Brief : Unbind callback that was bound to Buddy’s face touch event

• Param :

o IUIFaceTouchCallback iCallback : callback you want to unbind from Buddy’s face

touch event

42
[Buddy SDK – User guide-]

[30/08/2021]

4. VOCAL INTERACTION

• SPEECH (Text-to-speech TTS)

For TTS, the SDK uses the ReadSpeaker API.

void Speech.loadReadSpeaker()
Purpose: Initializes ReadSpeaker module. (downloads a license file if not present)

void Speech.startSpeaking(iText, iExpression, iCallback)
Purpose: Says provided text and make a special mouth movement

Params:

• iText (string): Text to speak

• IExpression (LabialExpression):

o SPEAK_ANGRY

o NO FACE

o SPEAK HAPPY

o SPEAK NEUTRAL

• iCallback: (ITTSCallback.Stub()): Callback on success, pause, resume or error. Either onSuccess or

onError are called once at the end of the speech. onPause and onResume are called each time a

pause (following this pattern \pause=<time_in_milliseconds>\ in iText) starts or finishes.

Note :

It is possible to add pauses in a text to say. To do it, simply add inside the iText string this

marker \pause=<time_in_milliseconds>\ . Replace <time_in_milliseconds> by the number of milliseconds

you want Buddy to stop his speech.

Warning:

If you want to write it in a Java string you need to escape the \ character by repeating it. So for

example write \\pause=1200\\ if you want a pause of 1200 milliseconds.

For ex:

BuddySDK. Speech.startSpeaking("Hello \\pause=1200\\ My name is buddy");

void Speech.stopSpeaking()
Purpose: Stop speaking

https://www.readspeaker.com/

43
[Buddy SDK – User guide-]

[30/08/2021]

void Speech.setSpeakerPitch(iPitch)
Purpose: Sets pitch of speaker

Params:

• iPitch (int): can take value 50% to 200%. The default value is 100%. The lower the pitch is,

the deeper the voice is.

void Speech.setSpeakerSpeed(iSpeed)
Purpose: Sets speed of speaker

Params:

• iSpeed (int): Can take value 50% to 400%. The default value is 100%.

void Speech.setSpeakerVolume(iVolume)
Purpose: Control the volume of speech

Params:

• iVolume (int): Can take value 0% to 300%. The default value is 100%. The higher the value

is, the higher the volume is.

int Speech.getSpeakerPitch()
Purpose: gets pitch value

Return:
• (int) : pitch value

int Speech.getSpeakerSpeed()
 Purpose: get speaker speed

Return:
• (int) : speed value

int Speech.getSpeakerVolume()
Purpose: get speaker volume value

Return:
• (int) : volume value

boolean Speech.isSpeaking()
Purpose: check if ReadSpeaker is busy and is speaking

Return:
• (boolean) : “true” if Buddy is speaking and “false” if not

boolean Speech.isReadyToSpeak()
Purpose: check if ReadSpeaker is fully initialized and is not busy

Return:

44
[Buddy SDK – User guide-]

[30/08/2021]

• “true” if Buddy is ready to speak and “false” if not

void Speech.setSpeakerVoice(SpeakerName)
Purpose: change the speaker voice. The available speakers are:

o “roxane” : French female voice

o “kate” : English female voice

• LISTENING (Speech-to-text STT)

For STT, the SDK uses two external APIs :

- Cerence: an Automatic Speech Recognition (ASR) with two variants:

o Cerence with grammars: recognizes predefined sentences stored in compiled

‘grammar’ files. It works offline and returns the recognized sentence (Utterance) as

well as an intention (Rule) and score of recognition.

o Cerence FreeSpeech : recognizes any sentence, in French and English only.

- Google Speech-to-text API : an Automatic Speech Recognition (ASR), that recognizes any

sentence, but needs an Internet Connection. It returns only the returns the recognized

sentence (Utterance) as well as the score of recognition.

 Works

offline

Free speech Customizable Languages

Cerence Yes No Yes FR, EN

Cerence

FreeSpeech

Yes Yes No FR, EN

Google

FreeSpeech

No Yes No Multi-Lang.

https://cloud.google.com/speech-to-text

45
[Buddy SDK – User guide-]

[30/08/2021]

• API of Speech module

STTTask Speech.createCerenceFreeSpeechTask(iLocale)
Purpose: Create a Cerence free speech Speech to Text (STT).

Parameters:

• iLocale (Locale): Locale used (only English and French are supported).

Return: STTTask to manage the STT.

Throw: If an error occurs.

STTTask Speech.createCerenceTask(iLocale, iFcfFilename)
Purpose: Create a Cerence Speech to Text (STT) from a compiled bnf (called a .fcf).

Parameters:

• iLocale (Locale): Locale used (only English and French are supported).

• IfcfFilename (String): Fcf file full path.

Return: STTTask to manage the STT.

Throw: If an error occurs.

STTTask Speech.createCerenceTaskFromAssets(iLocale, iFcfFilename,

iAssetManager)
Purpose: Create a Cerence Speech to Text (STT) from a compiled bnf (called a

.fcf) located in the assets.

Parameters:

• iLocale (Locale): Locale used (only English and French are supported).

• iFcfFilename (String): Fcf file path from the root of the assets.

• iAssetManager (AssetManager): Asset manager used to have the root of the iFcfFilename.

Return: STTTask to manage the STT.

Throw: If an error occurs.

STTTask Speech.createGoogleSTTTask(iLocale)

Purpose: Create a Google free speech Speech to Text (STT).

46
[Buddy SDK – User guide-]

[30/08/2021]

Parameters:

• iLocale (Locale): Locale used (only English and French are supported).

o CANADA

o CANADA_FRENCH

o CHINA

o CHINESE

o ENGLISH

o FRANCE

o FRENCH

o GERMAN

o GERMANY

o ITALIAN

o ITALY

o JAPAN

o JAPANESE

o KOREA

o KOREAN

o SIMPLIFIED_CHINESE

o TAIWAN

o TRADITIONAL_CHINESE

o UK

o US

Return: STTTask to manage the STT.

Throw: If an error occurs.

• API of STTTask

void STTTask.start(continuously, iCallback)

Purpose: Start the listening.

Warning: Only one STTTask can be active at a time, so this start will uninitialize

any of STTTask objects already initialized.

47
[Buddy SDK – User guide-]

[30/08/2021]

Parameters:

• continuously (boolean): True for never stoping automatically, false to stop automatically

when something is heard.

• iCallback (ISTTCallback): return:

In the type STTResultsData which is an array, we can find the different STTResult that are the different

possibilities of what we can say to Buddy.

STTResult hold 3 values:

o getConfidence() : The score of recognition

o getUtterance() : The sentence that the user actually said

o getRule() : The Cerence rule if Cerence engine is used, an empty string otherwise.

void STTTask.pause()

Purpose: Pause the listening.

The robot will not listen anymore but some stuffs will be kept in memory to

be able to start again quickly.

void STTTask.stop()

 Purpose: Stop the listening.

 The robot will not listen anymore and everything will be released.

 If you call start after it may be a little slow, to make it kicker you can

 consider 2 things:

 1. Use pause() function instead.

 2. Call initialize() function before to call start again().

Advanced functions

void STTTask.initialize()

 Purpose: Initialize the listening object.

 It is never mandatory, the benefits is that if you call start() after the start

functionality will start quicker.

 Warning: Only one STTTask can be active at a time, so this initialization will

uninitialize any of STTTask objects already initialized.

48
[Buddy SDK – User guide-]

[30/08/2021]

void STTTask.isRunning()

 Purpose: Know if the task is listening.

STTType STTTask.getEngineType()

 Purpose: Get the STT engine used by this object.

 Return: Values can be:

o GOOGLE_STT

o CERENCE_FREESPEECH

o CERENCE

Locale STTTask.getLocale()

 Purpose: Get the locale used by this object.

void STTTask.subscribeToLifecycle(iSTTTaskLifecycleCallback)

 Purpose: Subscribe to some events of this object.

 Parameters:

• iSTTTaskLifecycleCallback (ISTTTaskLifecycleCallback): Subscription object.

void STTTask.unsubscribeToLifecycle(iSTTTaskLifecycleCallback)

 Purpose: Unsubscribe to some events of this object.

 Parameters:

iSTTTaskLifecycleCallback (ISTTTaskLifecycleCallback): Subscription object

49
[Buddy SDK – User guide-]

[30/08/2021]

5. Vision

The SDK Vision module gives access to ready-to use computer vision (CV) algorithms. There are manly

two types of algorithms: one-shot and continuous. One-shot algorithms (mainly object detection) are

called once, and return almost immediately the result of the CV algorithm from the camera input.

Continuous algorithms work on a continuous stream, and it will consume CPU power while active. So

the basic workflow would be:

- Manually start the process

- Get the on-demand information from the respective algorithm

- Manually stop the process when no more needed

By default the camera is started automatically at the opening of your app. However, you could

accidentally call for a CV algorithm after the camera has been intentionally stopped and not restarted.

All the algorithms will throw an IllegalStateException(“NOT STARTED”) if the camera or the continuous

algorithm is not started. So you might want to check the status of the camera with the getStatus()

method.

General camera functionalities

Vision.startCamera(cameraId, VisionCbk)

Purpose: start the desired camera. By default the first camera (Wide angle) is already

started at the beginning, so you won’t need to call this function, unless you stopped

it yourself.

Params :

• cameraId : the Id of the camera you want to start :

o 0 : Wide Angle camera

o 1 : Zoom Camera NOT SUPPORTED YET

• VisionCbk : IVision.Stub() that returns:

• onSuccess : string

• onError: String

Vision.stopCamera(cameraId, VisionCbk)

Purpose: stop the desired camera. It will unsubscribe the Vision service from the

camera, so that you can use it safely from another process.

Params :

• cameraId : the Id of the camera you want to start :

o 0 : Wide Angle camera

o 1 : Zoom Camera NOT SUPPORTED YET

• VisionCbk : IVision.Stub() that returns:

• onSuccess : string

• onError: String

50
[Buddy SDK – User guide-]

[30/08/2021]

CameraStatus Vision.getStatus(cameraId)

Purpose: give the information whether the camera is started/stopped, Tracking or

detecting Motion.

Returns :

A CameraStatus object containing

• wether the camera is started or not (with the isStarted() method)

• wether the Tracking is started or not (with the isTracking() method)

• wether the Motion detection is started or not (with the isDetectingMotion() method)

Params :

• cameraId : the Id of the camera you want to start :

o 0 : Wide Angle camera

o 1 : Zoom Camera NOT SUPPORTED YET

Object detection

arucoMarkers Vision.detectArucoMarkers()
Purpose: detect the aruco Markers (april Tag) with the camera. The marker must be

from the 36h11 dictionary.

Returns :

An arucoMarkers object containing

• The list of x, y of the detected aruco markers. In % (value between [0;1] of the image sides, with the

origin at the top-left corner of the image.

• The list of ids of the detected aruco markers

Detections Vision.detectFace(thres)
Purpose: detect the human faces with the camera

Returns :

A Detections object containing

• The list of position of the detected bounding boxes. In % (value between [0;1] of the image sides,

with the origin at the top-left corner of the image.

o Left side horizontal coordinate (with getLeftPos())

o Right side horizontal coordinate (with getRightPos())

o Top side vertical coordinate (with getTopPos())

o Bottom side vertical coordinate (with getBottomPos())

• The list of score (= confidence) of the detections

• The number of detections

Params :

• [Optional] Thres (float) : value between [0 ;1], minimum confidence to detect

DEFAULT VALUE = 0.8

https://april.eecs.umich.edu/software/apriltag

51
[Buddy SDK – User guide-]

[30/08/2021]

Detections Vision.detectPerson(thres)

Purpose: detect the human with the camera

Returns :

A Detections object containing

• The list of position of the detected bounding boxes. In % (value between [0;1] of the image sides,

with the origin at the top-left corner of the image.

o Left side horizontal coordinate (with getLeftPos())

o Right side horizontal coordinate (with getRightPos())

o Top side vertical coordinate (with getTopPos())

o Bottom side vertical coordinate (with getBottomPos())

• The list of score (= confidence) of the detections

• The number of detections

Params :

• [Optional] Thres (float) : value between [0 ;1], minimum confidence to detect

DEFAULT VALUE = 0.8

Motion detection

The motion detection uses the Farneback optical flow method to detect motion in the image.

As the motion detection analyses the video stream, the motion detection is processed

continuously. So the general workflow would be:

- Manually start the motion detection process

- Get the on-demand information of movement, as many times as you like

- Manually stop the motion detection process when no more needed

!!! Not stopping the process will slow down any other computer vision algorithm

void Vision. startMotionDetection ()
Purpose: start the motion detection process

Return :

• void

void Vision. stopMotionDetection ()
Purpose: stop the motion detection process

Returns :

• void

http://www.scholarpedia.org/article/Optic_flow#A3_Method_of_Farneb.C3.A4ck_.282000.29

52
[Buddy SDK – User guide-]

[30/08/2021]

boolean Vision. motionDetect ()
Purpose: detect motion in front of the camera

Returns :

• True : if the optical flow value is > Threshold (10.0 by default)

• False: otherwise

void Vision. setMotionThres (Thres)
Purpose: set the Threshold for motion detection

Params :

• Thres (Float) : the threshold value which defines the motion detection

Returns :

• Void

void Vision. motionDetectWithThres (Thres)
Purpose: detect motion in front of the camera for the specified Threshold

Params :

• Thres (Float) : the threshold value which defines the motion detection

Returns :

• True : if the optical flow value is > Threshold (10.0 by default)

• False: otherwise

motionDetection Vision. getMotionDetection ()
Purpose: get the motion detection

Returns : a motionDetection object which contains

• amplitude (Float) : the amplitude of the highest measured optical flow

• posX (Float) : the position of the highest measured optical flow in the image (origin at the top-left

corner). Expressed in %, along the horizontal axis.

• posY (Float) : the position of the highest measured optical flow in the image (origin at the top-left

corner). Expressed in %, along the vertical axis.

Color recognition

Colors Vision. ColorDetect ()
Purpose: get the dominant color in the image

Returns : a Colors Enum with:

 BLUE, GREEN, YELLOW, ORANGE, RED, PURPLE, WHITE;

53
[Buddy SDK – User guide-]

[30/08/2021]

Person Tracking

The Person tracking algorithm allow to visually lock on a single person (target).

The visual tracking uses the Discriminative Correlation Filter with Channel and Spatial Reliability

implementation from OpenCV. (empirically, the best speed/perf. ratio we found, even with a moving

camera)

 As a tracker uses the previous frame, it works continuously; so the method has to be started (and

expicitely stopped)

 So the general workflow would be:

- Manually start the tracking process

- Get the on-demand of the tracked target

- Manually stop the tracking process

!!! Not stopping the process will slow down any other computer vision algorithm

void Vision. startVisualTracking(thres, TrackingMode)
Purpose: start the tracking process

Returns :

• Void

Params :

• [OPTIONAL] Thres (Float) : value between [0;1], the threshold value which defines the minimum

confidence for the initial human detection

DEFAULT VALUE=0.8

• [OPTIONAL] TrackingMode (TrackingMode) : TrackingMode.NORMAL or TrackingMode.FAST for a

faster but less robust tracking

DEFAULT VALUE= TrackingMode.NORMAL

void Vision. stopVisualTracking()
Purpose: stop the tracking process

Returns :

• void

Tracking Vision. getTracking()
Purpose: get the tracked target

Returns : a Tracking object which contains

• isTrackingSuccessfull (Boolean) : True if a person is successfully tracked, False if the tracking is lost

or nobody is present in the image

• leftPos, rightPos, bottomPos, topPos (int) : The position of tracked bounding box. In % (value

between [0;1] of the image sides, with the origin at the top-left corner of the image.

54
[Buddy SDK – User guide-]

[30/08/2021]

Get the frame from the camera

Bitmap Vision. getGrandAngleFrame(VisionCbk)

Purpose: get the image frame from the came wide angle (“Grand angle”) camera

Returns : the camera frame as a Bitmap of 640x480 pixels

Params :

VisionCbk : IVision.Stub() that returns:

• onSuccess : string

• onError: String

deprecated: use method without argument instead

Bitmap Vision. getCVResultFrame(VisionCbk)

Purpose: get the image generated from the last executed CV algorithm

Returns : a Bitmap of 640x480 pixels

Params :

VisionCbk : IVision.Stub() that returns:

• onSuccess : string

• onError: String

deprecated: use method without argument instead

55
[Buddy SDK – User guide-]

[30/08/2021]

Examples of image returned by each CV algorithm:

Aruco Marker

detection

Face Detection

Human detection

Motion Detection

Human Tracking

56
[Buddy SDK – User guide-]

[30/08/2021]

6. Behaviour Instructions (BI)

BehaviourInterpreter

This class interpretes and run Behaviour Algorithms which contains sequential or parallel instructions

to play robot behaviours.

List of functions in BehaviourInterpreter:

• boolean Run(Context iContext, BehaviourAlgorithm iAlgorithm,

OnRunInstructionListener iListener, OnBehaviourAlgorithmLis-

tener iAlgorithmEndListener, ImageView iImageView, VideoView

iVideoView)

 Purpose: Runs the behaviour algorithm given in parameter. This is the method to call if the sequence

contains behaviour instruction to display image or videos.

Params:

• iContext the context of the activity

• iAlgorithm the algorithm to run

• iListener will be called each time a behaviour instruction is run

• iAlgorithmEndListener will be called when the sequence has ended

• iImageView the image view to display images

• iVideoView the video view to display videos

return true

public boolean Run(Context iContext, BehaviourAlgorithm iAlgorithm,

OnRunInstructionListener iListener, OnBehaviourAlgorithmListener iAlgorith-

mEndListener, ImageView iImageView, VideoView iVideoView)

• void Stop()
Purpose: Stop the algorithm execution.

public void Stop()

• boolean RunRandom(Context iContext, String iCategory,

OnRunInstructionListener iListener,

OnBehaviourAlgorithmListener iAlgorithmEndListener, ImageView

iImageView, VideoView iVideoView)

57
[Buddy SDK – User guide-]

[30/08/2021]

!!! :

 Purpose: Runs a random standard behaviour from the given category.

Params:

• iContext the context of the activity

• iCategory the category of the bi to choose

• iListener will be called each time a behaviour instruction is run

• iAlgorithmEndListener will be called when the sequence has ended

• iImageView the image view to display images

• iVideoView the video view to display videos

return true if found a bi with the given category, false otherwise

The categories usable are the following:

Angry, Awake, BadAnswer, BlinkDouble, BlinkLeft, BlinkRight, CenterHead, CenterHeart, Cliff-
Back, CliffFront, CliffLift, Congratulations, Dance, Defeat, Demo, DemoShort, DetectSound, Doc-
torCall, Doubtful, FastHeartBeat, FoundSomeone, GoodAnswer, Growling, Grumpy, Happy, Idle,
Idle_ANGRY, Idle_HAPPY, Idle_SAD, Idle_TIRED, InactivityDetected, Joke, LeftHead, LeftShoulder,
Listening, Love, LowHeartBeat, Neutral, OveractivityDetected, RightHead, RightShoulder, Sad,
Scared, Sick, Sleep, Smile, Surprised, Suspicious, Tease, Thinking, Tired, TofBack, TofFront,
TrackingEnd, TrackingStart, Victory, WakeUp, WatchNotWorn, What, Whistle, and Yawn

• registerOnRunInstructionListener(OnRunInstructionListener iLis-

tener)
Purpose: register to a class that implement OnRunInstructionListener

Param:

• iListener : class that implement OnRunInstructionListener

public void registerOnRunInstructionListener(OnRunInstructionListener iLis-

tener)

• BehaviourAlgorithmStorage Deserialize(Context iContext, String

iFile)

Purpose: Deserialize an xml file that contains a BehaviourAlgorithmStorage

Params:

• iContext the context of the activity

• iFile the name of xml file that contains the algorithm (the xml must be in the application files

folder).

Return the BehaviourAlgorithmStorage that contains the algorithm

public static BehaviourAlgorithmStorage Deserialize(Context iContext,

String iFile)

58
[Buddy SDK – User guide-]

[30/08/2021]

• BehaviourAlgorithmStorage Deserialize(Context iContext, File iFile)

Purpose: Deserialize an xml file that contains a BehaviourAlgorithmStorage

Params:

• iContext the context of the activity

• iFile the xml file that contains the algorithm (the xml must be in the application files folder).

Return the BehaviourAlgorithmStorage that contains the algorithm

public static BehaviourAlgorithmStorage Deserialize(Context iContext, File

iFile)

• void Serialize(Context iContext, BehaviourAlgorithmStorage iStor-

age, File iFile)

Purpose : Serialize a BehaviourAlgorithmStorage into an xml

Params:

• iContext the context of the activity

• iStorage the object to serialize

• iFile the file that will contains the object

public static void Serialize(Context iContext, BehaviourAlgorithmStorage

iStorage, File iFile)

OnRunInstructionListener

This interface is used to get the bi that is currently running by the interpreter

• void OnRunInstruction(ABehaviourInstruction instruction)
Purpose: Callback called each time a new behaviour instruction is runnning.

Params:

• instruction the current behaviour instruction currently runnning.

void OnRunInstruction(ABehaviourInstruction instruction);

OnBehaviourAlgorithmListener
This interface is used to know at what moment the sequence playing has stopped (either by using the

stop method or if it has ended).

• void OnBehaviourAlgorithm(boolean hasAborted)
Purpose: Will be called when the algorithm execution has ended

Params:

• hasAborted is true if the sequence has been aborted (by calling the stop method from Be-

haviourInterpreter). If it has ended normally it’s false.

void OnBehaviourAlgorithm(boolean hasAborted);

59
[Buddy SDK – User guide-]

[30/08/2021]

Example to read a BI:

Declare A behaviour interpreter in your activity class

private BehaviourInterpreter interpreter;

Then initialize it in OnSdkReady

interpreter = new BehaviourInterpreter();

Before using the following function you can implements the OnRunInstructionListener and

BehaviourAlgorithmListener in your activity class

public class MainActivity extends BuddyActivity implements OnRunInstruc-

tionListener, OnBehaviourAlgorithmListener

This function read a BI and executes it:

private void readBI(String biName) {

 ImageView imageView =findViewById(R.id.imageView);

 VideoView videoView=findViewById(R.id.videoView);

 String docPath = Environment.getExternalStoragePublicDirectory(Environ-

ment.DIRECTORY_DOWNLOADS).toString();

 String fileName = docPath + "/" + biName;

 File source = new File(fileName);

 try {

 //BehaviourAlgorithmStorage storage = serializer.read(Behaviour-

AlgorithmStorage.class, source);

 BehaviourAlgorithmStorage storage = interpreter.Deserialize(this,

source);

 if(storage==null) {

 Log.e(TAG, "onReadBI storage null");

 }

 else {

60
[Buddy SDK – User guide-]

[30/08/2021]

 final boolean run = interpreter.Run(this, storage.getAlgo-

rithm(), this, this, imageView, videoView);

 biPlaying=true;

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

The xml must be in the download folder in Android

You must have a videoview and imageView in your layout application in order to use the previous

function.

7. User interface (UI)

• void UI.setCloseWidgetVisibility(FloatingWidgetVisibility iVisibility);

 Purpose: set the visibility of the close Button in your app. This Button is managed by Buddy-

Core and is always visible by default. However you can change the visibility of the button in

your app using this method.

Params:

• iVisibility (FloatingWidgetVisibility enum) :

o FloatingWidgetVisibility.NEVER : completely hide the button

o FloatingWidgetVisibility.ALWAYS : always show the button

o FloatingWidgetVisibility.ON_TOUCH : only shows the button after a touch of the caress

sensors or the screen2

• void UI.setMenuWidgetVisibility(FloatingWidgetVisibility iVisibility);

 Purpose: set the visibility of the BuddycoreMenu Button in your app. This button is man-

aged by BuddyCore and is always visible by default. However you can change the visibility of

the button in your app using this method.

Params:

• iVisibility (FloatingWidgetVisibility enum) :

o FloatingWidgetVisibility.NEVER : completely hide the button

o FloatingWidgetVisibility.ALWAYS : always show the button

2 The activity you touch must have called setViewFace

61
[Buddy SDK – User guide-]

[30/08/2021]

o FloatingWidgetVisibility.ON_TOUCH : only shows the button after a touch of the ca-

ress sensors or the screen3

• void UI. startPinLock(String iCode, String iTitle,

Consumer<Boolean> iCallback);

Purpose: Lock screen until user enters PIN code or closes dialog. Can be also unlocked with

dev code (if set) and master code.

Params:

• ICode (String) : PIN code. Max 6 characters, numbers only.

• iTitle (String): Optional title to show.

• iCallback (Consumer<Boolean>): True if code correct, false if code incorrect or closed.

• void UI. askToQuitApp(String iMessage, int iAutoHideTime);

Purpose: Show a popup asking user whether to quit the application. It is automatically called

with default parameters when top-right "Close" button is tapped.

Params:

• iMessage (String) : Message to show. If empty, it is set to default "Are you sure you

want to close this app?"

• iAutoHideTime (String) : Time in seconds. Automatically close app if no user response.

Default is 0 (no autoclose).

• void UI. setQuitButtonDialogMessage(String iMessage);

Purpose: Change message that is shown when close button is tapped.

Params:

• iMessage (String) : Message to show. If empty, it is set to default "Are you sure you want to

close this app?"

: in any case, the BuddyCore Menu button and the close app button appear after maintaining

the contact on both the head and heart caress sensors simultaneously during 10s.

 3The activity you touch must have called setViewFace

62
[Buddy SDK – User guide-]

[30/08/2021]

8. Companion

void Companion.raiseEvent(String eventName, Map<String, String>

eventParameters)

Purpose: Raise a Companion event. This event can indirectly trigger a mission

that is already listening to this event.

Parameters:

eventName (String): Name of the event

(optional) eventParameters (Map<String, String>): Parameters of the event. If the associated mission

calls a runActivity, the parameters will be forwarded in the extras of the launched activity.

63
[Buddy SDK – User guide-]

[30/08/2021]

8 - TUTORIALS

1) Make the robot move (wheels)

In the following we present a tutorial to make the robot go forward

• Layout XML file:

The aim of the app is to make Buddy go forwards.

First, define the layout.

Step 1: At the start of your code it’s important to add the red squared lines for the interface.

Step2: Add two buttons to control the robot.

The first will be used to start the wheels, it will enable the wheels with the enableWheels() function.

Wheels must be enabled before any mouvement to be successful.

The second button will command the deplacement of the robot with the moveBuddy() function.

64
[Buddy SDK – User guide-]

[30/08/2021]

The “advance” button is used to, once it’s clicked on, make Buddy move.

The “Enable wheels” button is used to, once it’s clicked on, enable the wheels motor.

Important ! Give each of the buttons an Id, it will be important in the programmation of the java file.

Step3: Finally, on the top right of your screen, go in the Design part.

 choose “BuddyTheme [default]”

65
[Buddy SDK – User guide-]

[30/08/2021]

• MainActivity file:

Step 1: Go in the MainActivity Java file and start by importing the needed functions. Here are the ones

needed to move Buddy.

 : Anytime you miss an import/reference in your java code (appears in red), right click on it

and press ALT + ENTER. The auto completion from Android Studio will add it for you!

Step 2: In the public class MainActivity, define 2 buttons for each button on the layout file

In the onCreate location, link the two buttons with the two created in the layout file.

66
[Buddy SDK – User guide-]

[30/08/2021]

Step 3: In onCreate, set the button enable_wheels OnClickListner, this will execute the command if

the button get clicked

The function linked to this OnClickListener is enableWheels() here.

Step 4: The motors wheels have to be enabled, set the parameters of the enableWheels function

turnOnRight and turnOnLeft to 1.

Step 5: Use the IUsbCommadRsp.Stub() to get the success or failed callback with the “s” string.

It’s also possible to add specific log for those callbacks.

67
[Buddy SDK – User guide-]

[30/08/2021]

Now the motor of each wheel is set on, the robot can move with different functions

Step 6: In onCreate, set the button mButtonAdvance OnClickListner, this will execute the

AdvanceFunction if the button get clicked

This button will call moveBuddy().

Step 7: Define the speed and distance settings for the moveBuddy() function in the AdvanceFunct()

Step 8: The callbacks function is set by IUsbCommadRsp.Stub() of this moveBuddy function. Once

again it is possible to customize the callback in the yellow underline zone to ensure of success or

failure of each part.

68
[Buddy SDK – User guide-]

[30/08/2021]

2) Running the App

Step 1: Launch the app and this display should appear:

Step 2: Click on Enbale Weels and wait for the callback.

69
[Buddy SDK – User guide-]

[30/08/2021]

Step 3: Click on Advance and Buddy should move forwards at 0.5m/s on 50cm.

2) Make the robot move (HEAD)

In the following, we present an example of an application to move the head of buddy with the SDK.

• Layout XML file :

Step 1: Create new buttons to do the different moves for head.

Here is the button for Buddy to do a “yes move”.

<Button
 android:id="@+id/button_yes"
 android:layout_width="200dp"
 android:layout_height="50dp"
 android:text="MOVE YES"
 android:textSize="20sp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.047"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.08" />

Here is the switch to enable the motor for “yes move“

<Switch
 android:id="@+id/Enable_yes"

70
[Buddy SDK – User guide-]

[30/08/2021]

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Enable no"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

Step 2: Create two EditText to enter the value of angle you want

Here is the EditText for the angle we have choosen for Buddy to do a “yes move”

<EditText
 android:id="@+id/angle_yes"
 android:layout_width="244dp"
 android:layout_height="139dp"
 android:ems="10"
 android:gravity="center"
 android:hint="Specify the angle of Yes"
 android:inputType="numberSigned"
 android:scaleType="fitCenter"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.05"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.667" />

• MainActivity file :

Step1: Go to MainActivity and initialize the button to do a “yes move” and a switch to enable “yes

move” motor

Button :

findViewById(R.id.button_yes).setOnClickListener(v -> onButtonYes());//The button
allowing Buddy to do a "yes" move

Switch :

private Switch Enable_switch_no; //switch to enable motor for "no" move

Enable_switch_no = findViewById(R.id.Enable_no); //Linking between xml switch and
Enable_switch_no variable

We recommend to do the initialization at the beginning, for instance, in the onCreate() callback of

your application.

Step 2: Create the function to enable the motor.

To save power, the motors are disabled by default. Enable the motors when the switch is checked. In

our case we focus on the motor to do “yes move”.

//Switch to enable or disable the motor
Enable_switch_yes.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {

71
[Buddy SDK – User guide-]

[30/08/2021]

 if (isChecked) {
 // The motor for "yes" move is enable
 BuddySDK.USB.enableYesMove(1, new IUsbCommadRsp.Stub() {
 @Override
 //if the motor succeeded to be enabled,we display motor is enabled
 public void onSuccess(String success) throws RemoteException {
 Log.i("Motor Yes", "Yes motor Enabled");
 }

 @Override
 //if the motor did not succeed to be enabled,we display motor
failed to be enabled
 public void onFailed(String error) throws RemoteException {
 Log.i("Motor Yes", "Yes motor Enabled Failed");
 }
 });
 } else // The motor for "yes" move is enable
 {
 BuddySDK.USB.enableYesMove(0, new IUsbCommadRsp.Stub() {
 @Override
 //if the motor succeeded to be disabled,we display motor is
disabled
 public void onSuccess(String success) throws RemoteException {
 Log.i("Motor Yes", "Yes motor Disabled");
 }

 @Override
 //if the motor did not succeed to be disabled,we display motor
failed to be disabled
 public void onFailed(String error) throws RemoteException {
 Log.i("Motor Yes", "Yes motor Disable Failed");
 }
 });
 } // end if checked
 } // end Onchecked callback
});

If you want to enable the motor for Buddy to say yes, the following line will be useful.

This line allows you to enter the arguments.

 BuddySDK.USB.enableYesMove(State,Callback ()

 These are the arguments :

• State : motor enabled or not (respectively 1 or 0)

• Callback for return, “OK” if success and “NOK” if fail

Step 3: Create the Editable text where you will select the angle value you want

EditText angle_Yes; //Editable text to insert an angle value for "Yes" move

Step 4: Setup the methods which allow to do a “yes move”.

When we click on the button which allow Buddy to do a “yes move”, this methods is launched.

private void onButtonYes() {
 //Buddy function to do a "yes move"

72
[Buddy SDK – User guide-]

[30/08/2021]

BuddySDK.USB.buddySayYes(10,Integer.parseInt(String.valueOf(angle_Yes.getText())),
new IUsbCommadRsp.Stub() {
 @Override
 //If buddySayYes succeed to finish his "yes" move,success take the
value"YES_MOVE_FINISHED"
 public void onSuccess(String success)
 {
 //When success takes the value "YES_MOVE_FINISHED",buddy will
bring his head back
 if (success.equals("YES_MOVE_FINISHED"))
 {
 BuddySDK.USB.buddySayYes(10, -
Integer.parseInt(String.valueOf(angle_Yes.getText())), null);
 }
 }

 @Override
 //if the function did not succeed,nothing is happening
 public void onFailed(String error) {
 }
 });
}

If you want Buddy to say yes, you will need to use this line.

This line allows you to enter the arguments.

 BuddySDK.USB.buddySayYes(Speed,Angle,Callback()

These are the arguments :

• Speed : angular speed in °/s between –49.2 and 49.2

• Angle : angle in ° between –45and 45.

• Callback for return, “OK” if launched, “YES_MOVE_FINISHED” if move finished and “NOK” if

failed

//Buddy function to do a "yes move"
BuddySDK.USB.buddySayYes(10,Integer.parseInt(String.valueOf(angle_Yes.getText())),
new IUsbCommadRsp.Stub()

This line allows Buddy to execute something if the method worked.

if (success.equals("YES_MOVE_FINISHED"))

These lines allow Buddy to execute another BuddySayYes methods for Buddy to do a “yes move”.

//If buddySayYes succeed to finish his "yes" move,success take the
value"YES_MOVE_FINISHED"
public void onSuccess(String success)
{
 //When success takes the value "YES_MOVE_FINISHED",buddy will bring his
head back
 if (success.equals("YES_MOVE_FINISHED"))
 {

 }
}

This line is the callback if the method did not execute well

73
[Buddy SDK – User guide-]

[30/08/2021]

 //if the function did not succeed,nothing is happening
 public void onFailed(String error) {
 }
});

2) Running the App

When you launch the method you can can observe a window with the face of Buddy.

Check the switch to do a “yes move”

Enter the value of angle you want

 This move is executed for BuddySayYes

74
[Buddy SDK – User guide-]

[30/08/2021]

75
[Buddy SDK – User guide-]

[30/08/2021]

APPENDIX :

1 - Vocon grammars content

The content of the Cerence Grammars (predefined sentences that Buddy can understand through its

STT functionality) are in annex.

2 - BNF COMPILATION

Backus-Naur form (BNF) is a formal notation for encoding speech to text grammars. (cf

documentation in Bfn_compilation_windows_tools.zip

Cerence_doc/vocon_grammar_formalisms.html)

A bfn is usaly stored inside a text file. As you can see in the API the functions

Speech.createCerenceTask do not take a .bnf file as input but a .fcf. A .fcf is a .bnf compiled. So in

order to use the Speech.createCerenceTask functions you need to compile your .bnf. To do that you

need to use a windows executable.

Here are the steps to do:

1. Open the archive named Bfn_compilation_windows_tools.zip

2. Go in Compile_bnf_in_<language>/ folder depending on which langage you want to compile.

3. Edit the file grmcpl_samples/audio.bnf according to what you want to listen.

4. Open « Git bash » (for exemple) on the root folder of a language (Compile_bnf_in_<language>/)

and type:

For English folder:

./grmcpl.exe --modelFilepath=acmod6_9000_enu_gen_car_f16_v2_0_0.dat -p sample.txt -C

grmcpl_samples/results/audio.fcf

For French folder:

./grmcpl.exe --modelFilepath=acmod6_6000_frf_gen_car_f16_v1_0_0.dat -p sample.txt -C

grmcpl_samples/results/audio.fcf

76
[Buddy SDK – User guide-]

[30/08/2021]

For more details about gmcpl.exe see Cerence_doc/tools/grmcpl/grmcpl.html

5. Get the generated .fcf in grmcpl_samples/results/audio.fcf

3 - APP ICON

In your image editor, prepare

an image file:

- 128x128 px

- 72 dpi

- Transparent background

- Black lines

- Outline only

- Leave around 2 pixel margins

just to be sure image is not cut

on the edge

Save it to

\app\src\main\res\drawable in

your app’s directory as

appicon.png

In Android studio, go to app >

res > drawable and click it with

right mouse button

Select New > Image Asset

77
[Buddy SDK – User guide-]

[30/08/2021]

Set Foreground layer settings :

1. Select your image under

Source Asset Path

2. Trim to Yes, Resize 100%

Set white color as backgound

Press Next, then press Finish

If saving file shows errors, delete

mipmap folder and repeat

process

Your manifest file should contain

android:icon like shown in

example

78
[Buddy SDK – User guide-]

[30/08/2021]

ANNEX

Correspondance Mood <> Led colors

Angry #cc0000

Grumpy #96257c

Happy #ffc700

Listening #53b200

Neutral #00d3d0

Sad #ff0ab1

Scared #ccc930

Sick #628c00

Surprised #cccc00

Thinking #35dd40

Tired #474c20

Love #aa5a63

79
[Buddy SDK – User guide-]

[30/08/2021]

List of parameters in applications.json (non-exhaustive)

• « Package »
Application package name

• « Name »
Application name override. If not empty, shows under the icon instead of the real name.
 If neither exist, will show package name.

• « ShowInMenu »
Whether to show application on Apps menu tab

• « Autostart »
Whether to launch application immediately when Core finishes its starting sequence

• « ShowMenuButton »
Whether to show or hide Menu floating widget.

• « ShowCloseButton »
Whether to show or hide Close floating widget.

• « AskToQuit »
Whether to show close dialog when clicked on close button.

• « ShowPopups »
Whether to show dialog when clicked on close button.

